
Temperature-Range-Probe

Rohrwandsonde

Potentiale erkennen

Möglichst frühzeitiger und zielgerichteter Einsatz, abgestimmt auf Bauteil, Werkstoff, Brennstoff und Betriebsweise.


Korrosion und Verschmutzung

... vermindern

Spielräume beim Kesseldesign erkennen, Werkstoffe und Schutzschichten anpassen, eventuell Betriebsweise und Brennstoff abändern.

... vermeiden

Auswirkungen von unvermeidbaren Änderungen in den Betriebsabläufen rechtzeitig bewerten.

Befunderhebung

Morphologische Auswertung

Visuelle Bewertung der Abzehrungsphänomene Typischer Einsatz: Temperaturschwellen für Taupunkte erkennen, Auswahl geeigneter Werkstoffe bzw. Schutzschichten

Ermittlung von Abzehrraten

Temperatur- und positionsabhängige Abzehrraten Typischer Einsatz: Versuchsreihen mit mehreren Sonden mit verschiedenen Schutzschichten/Werkstoffen

Auswertung von Belagseigenschaften

Ablagerung von "frischen" Belägen zur Untersuchung der Belagseigenschaften Typischer Einsatz: Untersuchung der Ursachen

intensiver Verschmutzung

Auswertung von Korrosions-Mechanismen und -Ursachen

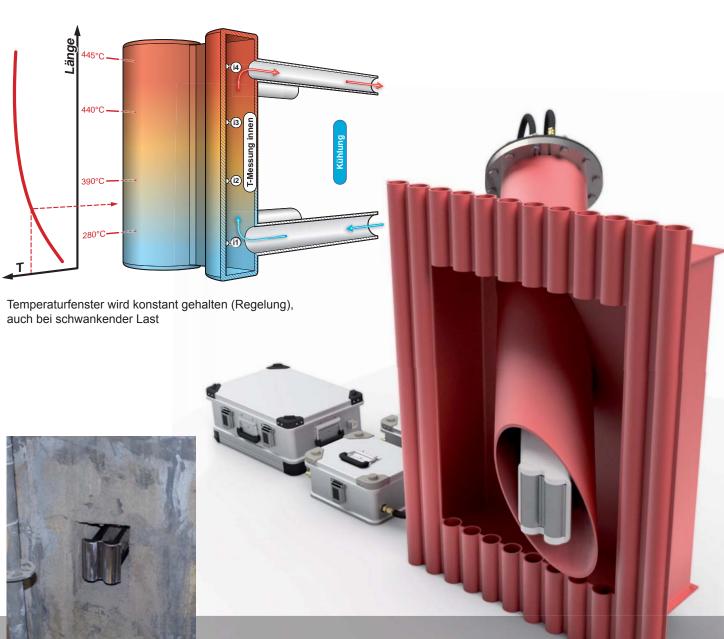
Erzeugung von Schliffpräparaten an relevanten Temperaturpositionen und chemische Untersuchungen

Typischer Einsatz: Begleitung von Verfahrensoptimierungen

▶ Aufbau einer Sonde

- · Testrohre (Kesselrohre)
- 。 Innenrohr, für die Zufuhr der Kühlluft in die Sonde
- Innenliegende Thermoelemente (meist zwischen 4 und 10 Stück)
- Regelung, die ein konstantes Temperaturprofil auf dem Sondenkörper ermöglicht
- Speicherung der Temperatursignale
- Fernüberwachung

Jede Sonde ist maßgeschneidert auf die jeweilige Fragestellung


Angepasst werden

- · der Werkstoff inklusive der Applikationen
- der Temperaturbereich
- die Anzahl der Thermoelemente
- der Einsatzort und die Einsatzdauer
- die Länge und der Durchmesser der Sonde

▶ Einsatz der Sonde Vor-Ort

Ein- und Ausbau während des Betriebs oder Stillstands

