Temperature-Range-Probe

Tube

Identify Potentials

Early and individual use related to building components, material, fuel and mode of operation.

Reduce Corrosion and Fouling

Recognize the opportunities provided by the boiler design, optimize material and protective layer, change the mode of operation and fuel as required.

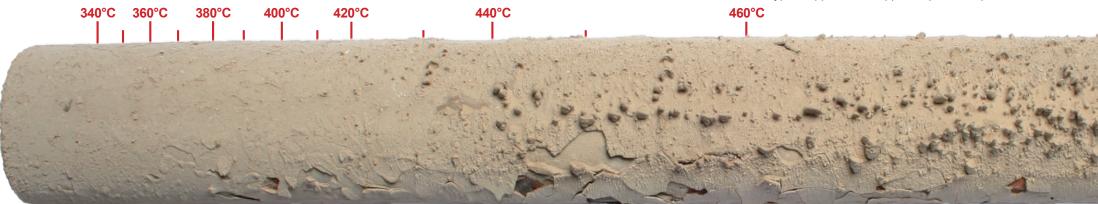
Avoid Corrosion and Fouling

Evaluate effects of unavoidable changes in the working process in a timely manner.

Assessment

- Morphological Evaluation
 Visual evaluation of corrosion phenomena
 Typical application: discover temperature thresholds for dew points, selection of suitable materials or protective layers
- Determination of Corrosion Rate

Corrosion rate related to temperature and position Typical application: test series with several probes and various protective layers/materials


• Evaluation of Deposit Characteristics Deposition of "fresh" deposits in

order to examine deposit characteristics Typical application: investigation into reasons for intense fouling

• Evaluation of Mechanisms and Reasons for Corrosion

Preparation of sections at relevant temperature positions and chemical analysis

Typical application: support of process optimization

CheMin[®]

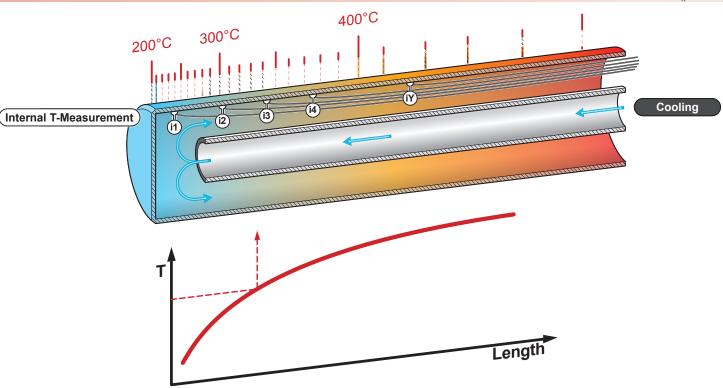
Temperature-Range-Probe

Construction of a Probe

- test tube (boiler tube)
- inside tube to conduct cooling air to the probe tip
- inner thermocouples (in most cases 5 to 10 units)
- control to ensure a constant temperature profile on the probe body
- recording of the temperature signals
- remote monitoring

Each Probe is Customized

Adjustment of


- material including applications
- the temperature range
- the number of thermocouples
- the position of thermocouples (axial or radial arrangement)
- place and time of application
- length and diameter of the probe

Application of the Probe On-site

installation and removal during operation or outage

CheMin GmbH Am Mittleren Moos 46 A 86167 Augsburg, Germany Phone +49 821 748 39 0 Fax +49 821 748 39 39 www.CheMin.de

Temperature frame is kept at a constant level (control), irrespective of fluctuating load

Present Applications

location	fuel	environment	probe temperature	issue
furnace	lignite	1200° C	300 – 500° C	slagging
superheater	lignite	1100° C	350 – 550° C	erosion
furnace	"cement"	950° C	480 – 700° C	material test
1st pass	substitute fuel	900° C	350 – 550° C	material test
1st pass	waste	800° C	250 – 450° C	material test
superheater	waste	650° C	300 – 500° C	material test
superheater	biomass	650° C	350 – 500° C	variation of fuel
3rd pass	biomass	650° C	400 – 500° C	corrosion
economizer	gas	350° C	80 – 150° C	corrosion (deliquescent)
air preheater	biomass	250° C	80 – 150° C	corrosion (deliquescent)
chimney	waste	140° C	70 – 110° C	corrosion (dew point)
fabric filter	waste	130° C	110 – 130° C	corrosion (deliquescent)